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Abstract

A non-associated plasticity theory is developed for granular materials based on the concept of a characteristic
stress state of vanishing incremental dilation. The theory makes use of a common format for yield surface and ¯ow

potential, representing the surfaces in terms of stress invariants and a single shape function for each. The ¯ow
potential surface is determined by an approximate friction hypothesis. Plastic work hardening is introduced in a
linear invariant form, that permits dilation before the ultimate state, by including the work associated with shape

change in addition to the traditional contribution from volume change. The model is fully three-dimensional and is
de®ned by only six parameters: two for elastic sti�ness, one for plastic sti�ness, two for the shape of yield and
plastic potential surfaces, and one for the dilation at failure. Typical material response is illustrated, while model

calibration and its ability to represent experimental data are discussed in Part II. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In granular materials with hard particles the main deformation mechanism is sliding between the

grains under the e�ect of friction. The ratio of shear to normal stress therefore plays a dominant role in

the mechanical behavior. In the formulation of a plasticity theory for granular materials, this suggests

self-similar families of yield surfaces and plastic potential surfaces, where only the stress ratios appear. It

is a common experience that friction e�ects lead to non-associated behavior, and a plasticity theory

therefore requires identi®cation of yield surface, plastic potential and a suitable hardening mechanism.

Traditionally, plasticity theories are formulated in stress space, and it is therefore important to
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identify characteristics of the deformation behavior that can be described in stress space, without explicit
reference to the state of deformation. Fig. 1 shows results of a standard triaxial test on two sand
samples with the same type of grains, but with di�erent void ratio e. The axial strain is denoted by e1
and the volumetric strain by ev: The con®ning stress is s3, and the di�erence between maximum and
minimum principal stress is q � s1 ÿ s3: The volumetric strain shows a typical transition from initial
contraction to dilation, reaching an approximate constant rate of dilation before reaching the maximum
stress di�erence level.

The point of transition from contraction to dilation will be termed the characteristic state, while the
state corresponding to maximum excess stress will be termed the ultimate state. The characteristic and
ultimate states are indicated for both loose and dense material on each graph. It is seen that the
characteristic state corresponds closely to identical values of q for both materials, while the ultimate
capacity qu is higher for the dense material. This observation, also supported by numerous other test
results, suggests that a plasticity theory for granular materials should include explicit recognition of the
characteristic state in stress space, while the ultimate state depends on the state of deformation. This
was recognized in the early work of Roscoe and Scho®eld (1963) and Roscoe and Burland (1968) in the
development of critical state theory for soils. Classical critical state theory was developed in terms of a
two-dimensional stress space with mean stress p and maximum shear stress 1

2q: The ultimate stress states
are located on the critical line q=p �M corresponding to a state of plastic shear without dilation
(Scho®eld and Wroth, 1968). While representing some of the basic features of granular materials well,
the critical state theory has a number of shortcomings, such as the two-dimensional basis of the theory,
the assumption of an associated ¯ow rule, and lack of dilatation before failure.

In the present theory, the concepts from classical critical state theory are generalized to provide a
non-associated hardening plasticity theory in terms of stress invariants. The theory is formulated in
terms of a family of smooth self-similar yield surfaces that satisfy the no-tension condition and an
independent plastic ¯ow potential derived approximately from a friction hypothesis, thus generalizing a
preliminary associated theory (Krenk, 1997). The shape yield surface and the plastic ¯ow potential are
each determined by a single parameter, specifying the aspect ratio of the surface in principal stress
space. The aspect ratio of the plastic potential surface can alternatively be expressed as the inclination of
the line in a p, q-diagram marking the transition from contraction to dilation. While the classical critical
state theory identi®es this state with the ultimate state, the ultimate state is de®ned independently in the

Fig. 1. Tests on loose and dense Eastern Scheldt sand with con®ning stress s3 � 640 Pa, (adapted from Andersen et al., 1997). (a)

Stress di�erence q, (b) volumetric strain ev:

S. Krenk / International Journal of Solids and Structures 37 (2000) 6343±63606344



present theory and typically corresponds to dilation. The development of plastic strain is controlled by a
linear work-hardening rule, in which, contributions from dilation and shear deformation are included
with separate weights. The relative weight on the shear deformation in the hardening rule determines the
plastic strain ratio and the shear to mean stress ratio of the ultimate stress states. Thus, the plasticity
e�ects of the present theory are speci®ed by only four parameters: a plastic sti�ness, the inclination Mc

of the characteristic line, the inclination Mu of the ultimate line, and the inclination Mf of the line to the
point of maximum width of the yield surface. All parameters of the model can be determined from the
stress±strain results of a standard triaxial test by a non-linear procedure described by Ahadi and Krenk
(1999) in a sequel to the present paper.

2. The general surface format

Fig. 2(a) shows a typical isotropic yield surface in principal stress space s1, s2, s3: The stresses are
positive in compression, and when the material is assumed to be without cohesion, the yield surface is
entirely within the ®rst octant. The yield surface is assumed to be isotropic, and when the yield
mechanism is friction, the yield surface will only depend on the ratio between the stress components.
With these assumptions only a single yield surface is needed, as it will grow in a self-similar way.
Similarly, a surface with isotropic symmetry is needed for the plastic ¯ow potential. In the present
theory, the same general format is used for both surface families, although they have distinctly di�erent
shape.

The surface is generated by a family of curves in the octahedral planes, of which one is shown in
Fig. 2(b). There is experimental evidence that the failure envelope is of rounded triangular shape, e.g.
Lade and Duncan (1975). The minimum requirement of the octahedral curves therefore, is a triangular
format permitting the speci®cation of the ``corner'' and the midpoint of the ``side'' of the triangle.
Several such formats are available, e.g. Lade and Duncan (1975), Lade (1977), Matsuoka and Nakai
(1985), Haythornwaithe (1984, 1985, 1992), Weidner (1990), Krenk (1996, 1997). All these formats have

Fig. 2. (a) Yield surface in principal stress space, (b) generating curves in octahedral and meridian planes.
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the common feature that the triangularity is generated via the third invariant of the total or deviatoric
stresses. The next section describes the structure of the simple cubic format with two parameters, and
then, introduce a suitable format of the meridian curves to de®ne the yield surface and plastic ¯ow
potential.

2.1. The octahedral contours

In the formulation of the model, it is convenient to use the mean stress p and the deviatoric stresses
sij,

p � 1

3
sii, sij � sij ÿ pdij �1�

The simplest form of an octahedral contour that satis®es symmetry with respect to the three principal
deviator stress components �s1, s2, s3� is the cubic polynomial

�s1 � d��s2 � d��s3 � d� � Zd 3 �2�
where the stress parameter d determines the size of the circumscribing triangle, and Z is a non-
dimensional shape parameter (Krenk, 1996). The family of curves corresponding to parameter values
0RZR1 are illustrated in Fig. 3. For Z � 0, the curve is composed of the three lines sj � ÿd, j � 1, 2, 3:
The relevant part is the isosceles triangle corresponding to the corner points �s1, s2, s3� � �2d, ÿd, ÿd �
etc. and midside points �s1, s2, s3� � �ÿd, 1

2d,
1
2d� etc. The center s1 � s2 � s3 � 0 corresponds to Z � 1,

and for any 0 < Z < 1, equation (2) de®nes a convex contour inside the triangle. For small values of Z,
the contour is nearly triangular, and for Z close to 1, the curve approaches circular shape. Eq. (2) also
generates three open branches, located symmetrically inside the exterior corner regions of the lines
sj � ÿd, j � 1, 2, 3: These branches are not part of the constitutive model, but it is important to know
their existence when developing numerical integration algorithms, in which, the stress point may
temporarily be located outside the yield surface.

The cubic Eq. (2) is conveniently written in terms of the deviatoric stress invariants

J2 � 1

2
sijsij � 1

2

ÿ
s21 � s22 � s23

� � ÿ�s2s3 � s3s1 � s1s2� �3�

Fig. 3. Smooth triangular contours with identi®cation of triaxial ``compression'', ``tension'' and ``shear''.
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and

J3 � 1

3
sijsjkski � s1s2s3 �4�

When using the fact that the sum of the deviator stresses is zero, Eq. (2) takes the form

J3 ÿ dJ2 � �1ÿ Z�d 3 � 0 �5�
Thus, in any octahedral plane, the contour is given in terms of a size parameter d, de®ning the
circumscribing triangle, and a shape parameter Z, determining the relative size, and thereby the shape of
the contour.

In the state of triaxial shear s2 � 1
2�s1 � s3�, and thus, s3 � ÿs1 and s2 � 0: In this stress state J3 � 0,

and the Eq. (5) takes the particularly simple form

J2 � �1ÿ Z�d 2, triaxial shear �6�
When it is observed that J 1=2

2 is a measure of the distance from the isostatic axis, it is seen, that the
parameter

g � �1ÿ Z�1=2, 0RgR1 �7�
is a direct measure of the relative width of the contour, g � J 1=2

2 =d:

2.2. Parameter representation of the surface

A parametric representation of the yield surface f �sj � � 0 is obtained by introducing the Lode angle

cos 3y � ÿ3
���
3
p

2

J3

J 3=2
2

�8�

Eq. (5) can then be expressed as a cubic in the radius in the octahedral plane, s � �sijsij �1=2 � �2J2�1=2:
The solution of this cubic equation is, see e.g. Krenk (1996),

s �

����
3

2

r
gd

cos

�
1

3
arccos�g cos 3y�

� �9�

Finally, the principal stresses can be expressed in terms of mean stress p, the radius in the deviatoric
plane s, and the Lode angle y,

24s1
s2
s3

35 � p

24 1
1
1

35� s

����
2

3

r
26666664
ÿcos y

cos

�
yÿ 1

3
p

�
cos

�
y� 1

3
p

�
37777775 �10�

This representation was used to plot the surfaces.
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3. Yield function and plastic ¯ow potential

The shape of the yield surface and the plastic ¯ow potential surface are determined by prescribing the
size d � d�p� of the circumscribing triangle, and the relative size g � g�p� as functions of mean stress p.
In addition to analytical convenience, this approach has the advantage that the product g�p�d�p� directly
de®nes the contour of the surface in the three triaxial shear planes. An alternative formulation in which
the compression and tension meridians are de®ned explicitly in terms of p is less convenient, see e.g.
Krenk (1996).

In the present theory, the size of the circumscribing triangle is assumed to be proportional to the
mean stress p,

d�p� � ap �11�
corresponding to an ideal friction material where only the ratio between the stresses are important. If
this assumption is introduced into the surface format (5), interpolation of the compression and tension
meridians of the Coulomb friction criterion leads to the Matsuoka and Nakai (1985) criterion. This
corresponds to a circumscribing triangle that is slightly inside the coordinate planes of the principal
stress space, i.e. a < 1 (Krenk, 1996). However, the work of Lade and Duncan (1975), Lade (1977) and
Lade and Kim (1995) has demonstrated, that material behavior corresponds well to a surface format in
which, the circumscribing triangle is the intersection of the octahedral plane with the coordinate planes
in principal stress space. This assumption, corresponding to a � 1 and thereby

d�p� � p �12�
will be adopted in the following. However, the parameter a can be retained in the format and used to
control the opening of the surface with minimal extra e�ort.

In the case of a � 1, the yield function can be written in terms of the third total stress invariant

I3 � det�sij � � s1s2s3 � J3 ÿ pJ2 � p3 �13�

This leads to the yield function

f�sss� � ÿJ3 � pJ2 ÿ p3
ÿ
1ÿ Zf�p�

� � ÿI3 � p3Zf�p� �14�

determined completely by the shape function Zf�p�: The plastic deviator strains are assumed to be
associated, while the volumetric strain component is non-associated. This assumption corresponds to
adopting identical shape deviator contours for the plastic potential and yield surface through the same
stress state, and thus, the plastic potential is of the form

g�sss� � ÿJ3 � pJ2 ÿ p3
ÿ
1ÿ Zg�p�

� � ÿI3 � p3Zg�p� �15�

where the shape is determined by the function Zg�p�:

3.1. The yield surface

There does not appear to be a theory for the shape of the yield function of granular materials.
Experiments suggest a rounded drop-like shape. In the present theory it is assumed that, the yield
surface approaches the circumscribing triangle for small p and is closed for a value of p � pf, de®ning
the current size of the yield function. This implies that the function Z�p=pf � should increase
monotonically from 0 to 1, when the argument p=pf increases from 0 to 1. A smooth transition is

S. Krenk / International Journal of Solids and Structures 37 (2000) 6343±63606348



accomplished by the power function

Zf�p� �
ÿ
p=pf

�m �16�

by which, the shape of the fully three-dimensional yield function has been reduced to a single non-
dimensional parameter m.

The yield surface is illustrated in Fig. 2, and the traces in the triaxial shear plane and a plane
containing the vertical principal axis and bisecting the angle between the two horizontal axes in the
principal stress space, are shown in Fig. 4 for di�erent values of the exponent m. For increasing
exponent m, the ``diameter'' of the yield surface increases, and it becomes increasingly ¯at at the end
p ' pf: The shape parameter m is assumed to be constant for any given material, while the parameter pf
controls the current size of the yield surface and is determined by a hardening relation.

3.2. The plastic potential

In contrast to the yield surface, several mechanically based theories have been proposed for the shape
of the plastic ¯ow potential surfaces, e.g. the Taylor hypothesis used in the original Cam±Clay theory
(Scho®eld and Wroth, 1968), the constant energy ratio theory proposed by Rowe (1962) and de Jong
(1976), and a generalized Coulomb friction theory with state dependent angle of dilation (Krenk, 1998).
In the following, an approximate theory is developed that improves on the classic Taylor hypothesis,
while leading to a very simple shape function gg�p�:

The derivation refers to stress states of triaxial shear and makes use of the p, q stress format with q �
s1 ÿ s3: In the state of triaxial shear, the middle principal stress is the mean of the two others, and thus
in this state of stress, p � 1

2�s1 � s3�: The conjugate plastic strain increments are de p
v , de p

q : Assuming
that the deformation takes place in the plane de®ned by the maximum and minimum stress components,
the plastic work is

pde p
v � qde p

q � dW p �17�

and after division by pdeq,

q

p
� de p

v

de p
q
� dW p

pde p
q

�18�

Fig. 4. Yield surface for m = 0.5, 0.9, 1.5. (a) Shear plane contour, (b) meridian curves.

S. Krenk / International Journal of Solids and Structures 37 (2000) 6343±6360 6349



The plastic strain increment vector �de p
v , de p

q � is orthogonal to the plastic potential surface, and thus,

de p
v

de p
q
� ÿdq

dp
�19�

This relation is used to eliminate the plastic strain increment ratio from Eq. (18), giving

q

p
ÿ dq

dp
� dWp

pde p
q

�20�

Various hypotheses regarding the right side of this equation leads to di�erent plastic ¯ow potential
contours.

In the classic Taylor hypothesis it was concluded from an approximate analysis of a shear box that
the plastic work is of the form dW p �Mpde p

q , where M is a parameter, representative of the material
friction. This result rests on the assumption that the mean stress p can be assumed to be representative
for the normal stress on an active shear plane. Clearly, this assumption breaks down, when one of the
principal stresses becomes negative. It will therefore be replaced by the more consistent assumption

dW p � 2nsminde p
q �21�

where the minimum principal stress has been used as the representative stress on active shear planes. In
the present state of triaxial shear smin � pÿ 1

2q, and the energy Eq. (20) then takes the form

q

p
ÿ dq

dp
� n

�
2ÿ q

p

�
�22�

Now, in triaxial shear q=p � 2J 1=2
2 =p � 2gg�p�, and the di�erential equation (22) can be integrated to

give

gg�p� � 1ÿ ÿp=pg�n �23�

Like in the case of the yield function this is a simple power function, but this time for 1ÿ gg and not for
Zf:

The traces of the plastic potential in the triaxial shear plane and a plane containing the vertical

Fig. 5. Plastic potential surface for n = 0.5, 0.9, 1.5. (a) Shear plane contour, (b) meridian curves.
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principal axis and bisecting the angle between the two horizontal axes in the principal stress space are
shown in Fig. 5 for di�erent values of the exponent n. In spite of the approximation involved in using
smin as the representative normal stress on active shear planes, the curves look remarkably similar to
those resulting from the more detailed analysis involving a state dependent angle of dilation presented in
Krenk (1998). A three-dimensional illustration of the plastic ¯ow potential in principal stress space is
given in Fig. 6(a), with the generators of the surface shown in Fig. 6(b).

3.3. Shape parameters and characteristic state

Most of the experimental data are available from triaxial tests in which only the axial stress s1 and
the cell pressure s2 � s3 are varied. It is therefore convenient to express the parameters n and m in a
form where they can be determined from triaxial tests, using the stress variables p and q � s1 ÿ s3: In
terms of these variables, the deviator stress invariants are J2 � 1

3q
2 and J3 � 2

27q
3, where q is positive for

triaxial compression and negative for triaxial tension. For these two special stress conditions the plastic
potential (15) is expressed as

g�p, q� � ÿ 2

27
q3 � 1

3
q2pÿ ÿ1ÿ Zg

�
p3 �24�

with Zg � 1ÿ g2g : Apart from the function Zg�p�, the potential function is homogeneous of degree three
in the stresses. This gives the di�erential relation

p
@g

@p
� q

@g

@q
� 3g� p4

dZg
dp

�25�

This relation leads to a simple explicit formula for the parameter n in terms of the slope of the
characteristic state line Mc � �q=p�c:

The characteristic state is described by the zero incremental dilation condition dev � 0: In the
following, this condition is used for the plastic volumetric strain increment de p

v : Thus, @g=@p � 0 at the
characteristic line. At any particular state of yielding, the parameters pf and pg take values such that

Fig. 6. Plastic potential surface in principal stress space, (b) generating curves in octahedral and meridian planes.
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f �s� � g�s� � 0: This implies that Zg � Zf � Z, and for a given state of stress, Z can be evaluated directly
from the yield function, without evaluating pg or pf:

At the characteristic state, the di�erential relation (25) takes the simpler form

q

p3
@g

@q
� p

dZg
dp

�26�

The right-hand side is evaluated by di�erentiation of the function Zg�p� for the plastic potential, given
by Eq. (23).

p
dZg
dp
� ÿ2ggp

dgg
dp
� 2ngg

ÿ
1ÿ gg

� �27�

The left hand side of Eq. (26) is determined by di�erentiation of the ¯ow potential in the form (24),

q

p3
@g

@q
� 2

9
M2

c �3ÿMc � �28�

where Mc � �q=p�c is the inclination of the characteristic line in a p, q-plot of triaxial compression. The
parameter n is then determined as

n � 1

9

M2
c �3ÿMc�
gc
ÿ
1ÿ gc

� �29�

where gc is the value of g at the characteristic state line, determined from the relation g�p, q� � 0 as

g2c �
1

3
M2

c

�
1ÿ 2

9
Mc

�
�30�

These two relations determine the parameter n explicitly from the inclination Mc of the characteristic
line in triaxial compression. Naturally, the parameter n can also be determined by di�erent expressions
from the critical state of stress on other meridians, e.g. triaxial shear or triaxial tension.

A similar derivation leads to an expression of the yield function parameter m in terms of the
inclination Mf � �q=p�f of a line from origo to the maximum point of the yield contour in a p,q-plot of a
triaxial compression test. Under triaxial test conditions, the yield function (14) is

f�p, q� � ÿ 2

27
q3 � 1

3
q2pÿ ÿ1ÿ Zf

�
p3 �31�

with Zf�p� � �p=pf �m: Apart from the function Zf�p�, the yield function is homogeneous of degree three
in the stresses. This gives the di�erential relation

p
@f

@p
� q

@ f

@q
� 3f� dZf

dp
p4 � mZfp

3 �32�

where the yield condition f � 0 has been used.
At the maximum point of the yield contour in a p,q-plot, @f=@p � 0: Eq. (32) then implies, that the

parameter m can be expressed as

m � q@ f=@q

Zfp3
�33�
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When Zf is eliminated by use of the condition f �p, q� � 0, this expression reduces to

m � 6M2
fÿ

3ÿMf

�ÿ
3� 2Mf

� �34�

where Mf � �q=p�f is the inclination of the line to the maximum point of the yield contour in a p, q-plot.
The geometric interpretation of the parameters Mc and Mf is illustrated in Fig. 7, using the values

Mc � 1:2 and Mf � 0:9, representative of dense sand. The characteristic line q �Mcp shown in Fig. 7(a)
separates contracting and dilating states of stress and can be determined directly from a triaxial test.
The parameter Mf, de®ning the shape of the yield surface, does not seem to have a similar direct
physical interpretation. Experimental results by Andersen et al. (1997) indicate that Mf <Mc, and it is
demonstrated by Ahadi and Krenk (1999) that an empirical relation can be developed for the parameter
Mf in terms of the slope Mc of the characteristic line and the rate of dilation prior to failure.

4. Stress±strain relations

In non-associated plasticity theory, the plastic strain increment is proportional to the gradient of the
plastic potential,

deee p � dw
@g

@sss
�35�

When the incremental elastic sti�ness tensor is denoted by C, the total strain increment is

deee � Cÿ1dsss� @g
@sss

dw �36�

The factor dw is determined by plastic hardening via the consistency condition,

df � @f

@sss
dsssÿH dw � 0 �37�

where the hardening parameter H is de®ned as

Fig. 7. p,q-representation of (a) ¯ow potential with Mc � �q=p�c, (b) yield surface with Mf � �q=p�f:
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H � ÿ @f
@pf

dpf
dw
� H1H2 �38�

The factor H1 � ÿ@f=@pf gives the dependence of the yield surface on the size parameter pf, while H2 �
@pf=@w describes the plastic hardening via the hardening rule developed below.

The relation between the stress increment dsss and the total strain increment deee is determined from
Eqs. (36) and (37). The factor dw follows from multiplication of Eq. (36) with @f=@sssC and subtraction
of Eq. (37). The elasto-plastic sti�ness tensor is then determined from Eq. (36) as

Cep � Cÿ �C@g=@sss��@f=@sssC�
H� @f=@sssC@g=@sss

�39�

In the following the material properties are described in tensor format, separating volumetric and
deviatoric parts, while the elasto-plastic sti�ness is derived from Eq. (39) in six-component vector
format.

4.1. Sti�ness parameters and hardening rule

The material sti�ness and hardening parameters are formulated in terms of volume and deviator
strains,

ev � eii, eij � eij ÿ 1

3
evdij �40�

The elastic part of the deviator strains is assumed to be proportional to the deviator stresses, sij � 2Geeij,
with constant shear modulus G.

A linear relation between the speci®c volume and the logarithm of the mean stress is assumed in the
elastic and the elasto-plastic states, i.e.

deev �
k
p

dp, dev � l
p

dp �41�

where the two non-dimensional ¯exibility parameters k and l are the inclination of the ev ÿ ln p line of
isotropic compression in the elastic and the elasto-plastic state, respectively.

The plastic volume strain increment de p
v � dev ÿ deev in isotropic elastic±plastic compression is then

related to the mean stress increment by

dp � p

lÿ k
de p

v �42�

In the case of elasto-plastic isotropic loading, p may be replaced by pf , and thus, relation (42) de®nes
the hardening in this speci®c case.

In the classical critical state theory, hardening is derived from volume changes alone (Scho®eld and
Wroth, 1968). Thus, hardening stops, and unlimited plastic deformation can take place, once the critical
state of zero incremental dilation is reached. In the present model, the work of the deviatoric stresses is
assumed to give an additive contribution to the hardening. Thus, for a general stress path relation (42)
is generalized to give the increment of pf in terms of a weighted sum of the volumetric and deviatoric
parts of the plastic work,

dpf � 1

lÿ k

�
pde p

v � wsijde
p
ij

�
�43�

S. Krenk / International Journal of Solids and Structures 37 (2000) 6343±63606354



where w is a non-dimensional weight parameter. At the ultimate state dpf � 0, and deformation proceeds
without further hardening. In this state, the plastic work of the deviatoric stresses sij de

p
ij is positive, and

for w > 0, the ultimate state therefore corresponds to a negative value of de p
v , i.e. to dilation. The

ultimate state and the weight parameter w are discussed further in Section 4.3.
The factor H1 from Eq. (38) follows directly from the yield function (14) by di�erentiation,

H1 � ÿ @ f
@pf
� mp2Z�m�1�=m �44�

The hardening factor H2 is found by inserting the plastic strain increment (35) into the hardening rule
(43), and substituting the plastic potential function (15).

H2 � dpf
dw
� 1

lÿ k

�
p
@p

@p
� wsij

@g

@sij

�
� p

lÿ k

��1ÿ w�
ÿ
J2 ÿ 3g2p2

�
� 2ng�1ÿ g�p2

�
�45�

The hardening parameter H has now been determined as a function of the stress invariants p and J2:

4.2. Weight parameter and ultimate state

In the ultimate state plastic deformation can proceed without further plastic hardening, and thus, the
ultimate state is determined by the condition of vanishing increment of the weighted plastic work in Eq.
(43). In turn this corresponds to H2 � 0, and by reduction of the expression (45) the weight factor w is
determined as

w � 1ÿ n
9gu
ÿ
1ÿ gu

�
M2

u �3ÿMu� �46�

where Mu � �q=p�u is the stress ratio in the ultimate state, and gu refers to g evaluated at the stress state
�p, q�u: The fraction in Eq. (46) is seen to be similar to the inverse of the expression (29), used to
calculate the exponent n � n�Mc� corresponding to the critical inclination Mc: The only di�erence is
that, in Eq. (46) the inclination is Mu, corresponding to the ultimate line. Thus, the formula for the
weight factor w can be written in the form

w � 1ÿ n�Mc�
n�Mu� �47�

This formula is very convenient for numerical implementation, as it simply requires evaluation of the
expression (29) for the two inclinations Mc and Mu: In practice, the di�erence between the inclinations
Mc and Mu of the characteristic and ultimate line is small, as illustrated in Fig. 7(a) by the dotted
ultimate line q �Mup with Mu � 1:25:

It follows from the formula (47) that the weight w is determined explicitly from the two directly
measurable parameters Mc � �q=p�c and Mu � �q=p�u: However, the small di�erence between Mc and Mu

for many granular materials makes determination of the weight w from Eq. (47) very inaccurate. It is
therefore important to realize that the intersection of the ultimate line q �Mup with the plastic potential
determines the direction of the normal and thereby the ratio between the plastic strain increments de p

v

and de p
q � 2

3�de p
1 ÿ de p

3 � at the ultimate state. The mathematical relation follows from Eq. (43) by
observing that the deviatoric plastic work in a triaxial compression test is sij de

p
ij � qde p

q : Thus, the
ultimate state condition dpf � 0 gives the relation
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wMu � ÿ
�

de p
v

de p
q

�
u

�48�

It is seen that the weight parameter w controls the strain rate ratio de p
v =de

p
q , and thereby the volumetric

rate of strain, at the ultimate state. In the ultimate state, the elastic strains are usually negligible
compared to the plastic strains, and thus, the plastic strain rate ratio on the right-hand side of Eq. (48)
is approximately equal to the total strain rate ratio. In the calibration of the model, described by Ahadi
and Krenk (1999), the asymptotic ultimate strain rate relation (48) is used iteratively to determine the
parameter w.

4.3. Sti�ness matrices

For numerical computations it is convenient to express the incremental stress±strain relations in the
six-component format with the stress vector

ttt � �sx, sy, sz, tyz, tzx, txy � �49�

and the strain vector

ggg � �ex, ey, ez, gyz, gzx, gxy � �50�

with angular shear strains gyz . . . : The corresponding elastic tangent sti�ness matrix is

C � G

26666664
a b b
b a b
b b a

1
1

1

37777775 �51�

with the non-dimensional parameters

a � p

kG
� 4

3
, b � p

kG
ÿ 2

3
�52�

In the six-component format, the stress invariant I3 used in the yield function (14) and the plastic
potential (15) is

I3 � sxsysz � 2tyztzxtxy ÿ
�
sxt2yz � syt2zx � szt2xy

�
�53�

The gradient of the yield function (14) takes the form
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@ f�ttt�
@ttt
�

2666666666666664

ÿ
�
sysz ÿ t2yz

�
� 1

3
d
�
p3Zf

�
=dp

ÿÿszsx ÿ t2zx
�� 1

3
d
�
p3Zf

�
=dp

ÿ
�
sxsy ÿ t2xy

�
� 1

3
d
�
p3Zf

�
=dp

ÿ2�tzxtxy ÿ sxtyz �
ÿ2�txytyz ÿ sytzx�
ÿ2�tyztzx ÿ sztxy �

3777777777777775
�

2666666666664

ÿ
�
sysz ÿ t2yz

�
� hfp

2

ÿÿszsx ÿ t2zx
�� hfp

2

ÿ
�
sxsy ÿ t2xy

�
� hfp

2

ÿ2�tzxtxy ÿ sxtyz �
ÿ2�txytyz ÿ sytzx �
ÿ2�tyztzx ÿ sztxy �

3777777777775
�54�

where the non-dimensional factor hf is de®ned as

hf � 1

3p2

d

dp

�
p3Zf

�
�
�
1� 1

3
m

�
Z �55�

Note, that in the di�erentiation Zf�p� is the function de®ned by Eq. (16), while in the ®nal form, Z is
determined directly from the condition f �sss� � 0, whereby Z � I3=p

3:
A similar formula applies to the gradient of the ¯ow potential (15), when the factor hf is replaced by

hg � 1

3p2

d

dp

�
p3Zg

�
�
�
1�

�
1� 2

3
n

�
g

�
�1ÿ g� �56�

In the di�erentiation, Zg � 1ÿ g2g , as given by Eq. (23), while in the ®nal result g2 � 1ÿ I3=p
3:

The elasto-plastic sti�ness retains the format (39), when the elastic sti�ness matrix (51) is used
together with the yield and potential function gradients given by Eqs. (54)±(56).

5. Representative results

The model requires six parameters: two elastic sti�ness parameters G and k, the elasto-plastic sti�ness
l, the plastic potential and yield function shape parameters n and m, and the non-dimensional weight
parameter w in the plastic work. The latter three parameters can alternatively be speci®ed in terms of
the inclinations Mc, Mf and Mu illustrated in Fig. 7. Accurate representation of the behavior of granular
materials as shown in Fig. 1, in particular the development of dilation, requires a non-linear calibration
procedure as discussed by Ahadi and Krenk (1999).

The results of a non-linear calibration of the model parameters to standard triaxial test data for loose
and dense sand are shown in Figs. 8 and 9. The two materials are loose Baskarp sand with an initial
speci®c pore volume e � 0:85 (Borup and Hedegaard, 1995), and dense Lund sand with initial speci®c
pore volume e � 0:55 (Ibsen and Jakobsen, 1996). In both tests, the initial isotropic con®ning pressure
was p0 � 0:64 MPa. The model parameters are given in Table 1. It is seen that for the dense sand, the

Table 1

Material parameters for Figs. 8±10

G (MPa) k � 103 l � 103 Mc Mu Mf

Loose sand 12.2 3.20 11.20 1.20 1.25 1.08

Dense sand 44.7 1.70 4.58 1.25 1.60 0.86
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shear sti�ness G is nearly four times larger, and the elastic and elasto-plastic ¯exibilities k and l are two
to three times smaller. Clearly, this gives smaller strains in the dense sand. However, a characteristic
feature can also be observed for the parameters Mc, Mu and Mf: The inclination of the characteristic
line Mc is quite similar for the two materials, and would probably be even closer for di�erent packing of
the same grains as illustrated in Fig. 1. For the loose sand, the ultimate state is only slightly above the
characteristic state, implying that Mu is only slightly larger than Mc, while for the dense sand this
di�erence is considerably larger. It turns out that a larger di�erence between Mu and Mc implies a larger
di�erence between Mc and Mf:

The two sets of material parameters from Table 1 were used to predict the stress path in a triaxial
constant volume (undrained) test with initial con®ning pressure p0 � 0:64 MPa. Corresponding
experimental results are not available for these materials, but the stress paths exhibit the correct
qualitative behavior. The initial stress path, starting at the dashed isostatic line, is curved with the
transverse stress component s3, decreasing until the characteristic state is reached. After a turn at the
characteristic state, the stresses increase proportionally. The ®nal part of the stress path lies between the

Fig. 8. Normalized stress and volumetric strain for Loose Baskarp sand.

Fig. 9. Normalized stress and volumetric strain for Dense Lund sand.
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characteristic and ultimate lines, described by

s1 � 3� 2M

3ÿM
s3, M �Mc, Mu �57�

and shown as dotted lines in Fig. 10. The angle between the characteristic and ultimate lines is larger for
dense materials, and generally this leads to a more smooth transition around the characteristic state for
dense materials. However, the ratio between the stress components on the ®nal part of the stress path
depends on the ratio of elastic to plastic volume sti�ness l=k as described by Ahadi and Krenk (1999).

6. Conclusions

A fully three-dimensional, non-associated isotropic hardening plasticity model for granular materials
has been developed by combining yield function and ¯ow potential families that ®ll the compression
octant in principal stress space, a simple non-linear elasticity relation, and a weighted plastic work
hardening rule. The common surface format for yield function and ¯ow potential ®lls the principal
stress octant such that, surfaces become increasingly triangular as they approach the principal stress
coordinate planes. The shape of the ¯ow potential is obtained from an approximate notion of the work
of friction in the triaxial shear stress plane, leading to a pointed yield surface somewhat similar to that
of the original Cam±Clay model (Scho®eld and Wroth, 1968), but consistently located fully inside the
compression octant of principal stress space.

The model is described in terms of only six parameters: G and k for elastic sti�ness, l for elasto-
plastic sti�ness, the two surface shape parameters n and m, and a non-dimensional weight w determining
the ratio between the components of the plastic strain increments at failure. This is an important
generalization of the Cam±Clay model, in which, the characteristic state is assumed to be identical with
the ultimate state, and therefore non-dilating. The gradient of the ¯ow potential relates the ratio of the
stress components and the direction of the plastic strain increments at the ultimate state, and thus, the
single parameter w determines both properties. Both stress and strain increment ratio at the ultimate
state are well predicted for the experimental results in Figs. 8 and 9, and further results analyzed by
Ahadi and Krenk (1999), thus supporting the dual role of the parameter w in the model.

The model parameters can be obtained from a standard triaxial test by a non-linear procedure

Fig. 10. Constant volume test predictions. (a) loose Barskap sand from Fig. 8, (b) dense Lund sand from Fig. 9.
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described by Ahadi and Krenk (1999), where numerous test results for sand in standard or constant
volume triaxial tests have been analyzed. The simple elasticity model, in which the tangent bulk
modulus is assumed to be proportional to mean stress p, is found to be adequate for calibration of
individual tests. However, a generalization of the model is needed, in order to correctly model the
dependence of model parameters on initial void ratio.
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